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Introduction and summary. 

Part It The solution ofu  • u  + k u • 0, with u (or -j—) on a 

half-line is obtained by a simpler and more direct method than those 

previously found in the literature. The method applies equally well 

to a wedge of arbitrary opening. An idea of Magnus (1) is used to 

simplify the solution when the boundary values can be expanded in a 

series of Bessel functions. 

Part II; The problem of diffraction by an infinite cone with a 

spherical tip is treated by a method similar to the used in part I, 

Both point source and plane wave excitations are considered. When 

the cone opening £ is -jE,  the problem reduces to reflection from a 

plane with a hemispherical boss. This simpler problem has been solved 

by Twersky (7): our- results agree with his solution. 

Part I. 

(a) We first determine the Green's function for the problem. 

A two-dimensional unit source is located at the point (p1 .$>) in 

front of a semi-infinite sheet (€• "0). 

We wish to solve the two-dimensional problem 

-'  On leave from Harvard university. 
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U(P,0+) - 0 

U(J=>,2TT-)- 0 . 

u obeys the Sommerfeld radiation condition at infinity 

lim {T (4^ - iku) - 0 
r -*» 

(r is measured from an arbitrary fixed origin). 

It is immediately clear that the angular eigenfunctions of the 

homogeneous equation are just sin •? 9. This is a complete orthogonal 

set of functions over 0 < ö < 2TT, satisfying the boundary conditions. 
oo 

We writs U(JJ,£) • ^_ a(p) sin -r 0 where the a (p) are to be 

determined. 

We multiply equation (1) by sin •* 0 and integrate from 0 to 2TT, 

obtaining: 

- sin § »i 

(A priori it is possible that the coefficients a (p)  are no better than „(f> 
0(—r) for lar<v3 n, therefore we may not be able to differentiate twice 

terrorise with respect to 9). 
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Integrating twice by parts and using the boundary conditions on u 

and sin -s-, we readily obtain 

*:(p) - sin 5 0« 

*rx S<f-f>') 

Hence 

Vf> 
2 

B jQ(y 
2 

< «' 
/*"/" 

This satisfies the radiation condition at infinity and the finiteness 

condition at the origin. 

We now require 

an<P' +> * an<f' ->i 

sin | fr« 

y 
Recalling the WronskLan relation: 

^•[Hn
(1)(y) jQ(y) - H^Cko«) Jn(y>] - 

2i 
TTk ' 

We hare: 

r 

an<f> fsinf*. 1 
2     2 

2      2 

> ö» 
/..*/ 

< ^' / V 
^ 
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We use the standard abbreviation: 

Co when p > jox 

a (p) - | sin | e» B*l'(ko>) Jn(k^<). The symbol & > means) 

\ox  when F> < -o' 

Therefore we have the Green's function: 

(2) u^e) - G(p,&jjoi,e«) - | 52 sin | ^ sin | 9' K^\kf») ^f<) 

(Formulas of this general nature, derived by the use of the idea of sources 

on a RLemann surface, are to be found in A. Sommerfeld (2)). 

Expression (2) may be rewritten 

G(j=»,e; *=>»,$') - | ]T_ sin nO sin no' irp(kp>) JQ(kp<) 

i ^9 . 2n+l 
2 2* Sin "T" n-0 

• •ta^i..,^^»),   (k/>«) 

It is easy to recognize the first series. Had we carried out a similar 

analysis for a completely infinite sheet, the Green's function would 

turn out to be i V. 8in •* sin n^' H* (kj«>) Jn(ky©<). 

We have therefore 

| J" sin n6 sin n&« H^(kp>) Jn(kf <) - ^H^CkR) - H^(kR*)| 

where R is the distance between the source and the observation point, 
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R is the distance between the reflected source about 0*0 and the 

observation point. This result could have been obtained from the 

familiar addition theorem for cylinder functions. We may «rite 

(3) BU»8/>',e') -f^W) - H^kR*)} 

• I g. sin aal»8in a*i«. H^CI^») j^fy,) 

We are now in a position to solve the problem of diffraction from a half- 

ikx plane. Let the incoming field be e   propagating towards increasing x. 

The half-plane is located in the 

plane x • 0, with 7 S.O. We use 

the coordinate system indicated 

* .w      y M TJ *» Fie» l- The total field is 

to vanish for x*0, yUO. 

ikx 
We can think of e   as being the limiting case of a point source re- 

moved to x • - 00. 

Indeed suppose there is a two-dimensional unit source at 0" » -^, 

The field of this point source 

is just ^ H^(kB). 

 * x 

Fig.  2 

We have: 

(p' - <?sin &)      p' + x 
R  . J. ±    ml  

C08 COS 
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When p' is taken very large, the asymptotic expansion for 

T Hp-'C») yields 

 ÜL 
i r 2   ~ 4  ikR 
UTO e      e 

To obtain the limit e        as p'—>co,  consider 

TT   "%" fi „(1), 4 
I 

TTkp' {£#><«)}   . 

As p* ~>co, cos A —* 1, R - yo1—>0, and it is easy to see that the 

ikx 
limit of the above expression is e 

It is reasonable to suppose that performing the same limiting 

process on (3) will yield the diffraction a plane wave normally incident 

on a half plane. The result is derived rigorously in (b). 

Thus, the total field is given by: 

u(|o,e) lim £ 
TTk 

—e   e ^I^W) H^(kR 1 
11, - V' - *? 5 "£i*/»> Ws"» n-0 

The terms outside the summation yield 
ikx       -ikx e       - e 

,(D In the summation, p <  <o»  and the asymptotic expansion for H, ^(kp*) 

is used: 

2 

ikp« 2       ~T     -in-lT e e Wlr-I T 



- 7 - 

We obtain 

iTT 

(4)  tt(jo,fr) - i sin kx • 2e~~r 23- (i)"n 3±n ^ * a±a ^ "21 Jfc*l(^ 

this formula can easily be identified with that of Magnus (1) who uses 

the time dependence e   and a rotated coordinate system. 

The results for the case where the normal, derivative vanishes on 

the half-line are easily found: 

(3a) a(r,»;r'fi<)  -iJH^CkR) . H<U<*»*)] 

1 Z ~ *P • — *P » "0<r>> Wsr«* n-0 

(4a)    u(^) - cos kx • 2e    *    j~  (i)-n cos ^ 0 cos 3|1 ^ J^k^) 
n-0 

It is clear that the case of oblique incidence is easily handled by the 

same method. 

(b) Consider the following two-dimensional boundary value problem: 

2    2 V u • k u - 0  u(j«,e+) - u0=,2*n"-) - given function f (e>)j 

u is continuous throughout the plane; grad u is continuous everywhere 

except possibly on the half-line Ö " 0; u obeys a suitable condition 

at infinity. 
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Remark on the condition at infinity. 

The condition at infinity is not the Sommerfeld radiation condition 

U*   <P     (^T " iku) " ° • P><x> r      T r 
In the case of diffraction by an obstacle having some infinite 

dimension, neither the total field nor the scattered field can be expected 

to satisfy the radiation condition. 

As a simple example, consider total reflection of a plane wave by an 

infinite sheet. 

ikx 
The incident field is e 

( ikx       -ikx ^ f. \ e       - e x < 0 
The total field is    J 

I 0 x > ö 
ikixl 

The "scattered" field is - e • '. None of these fields obeys the 

Sommerfeld condition. The same is true for diffraction by a semi-infinite 

sheet. 

This is not fatal, however, since all we really need is 

(5) £°*, KHo1)(kB) T£ -n -k Ho1>(kE)] ir • ° • 

Tb/3 "scattered" field in the problem of total reflection obeys condition (5). 

In general, the geometrical optics field (i.e., no diffraction) will 

».«4 «f.   fe\   (...«,»   r\     c      T#»«,»~   fn\\        ci...  *v..~   ...i4i...<l   M.IJ   4«.   ...... „ „ ... ,* ...i   *._ oovAoij     V^/     V oats    <u .    •-> .    uvuoa    \ j / / •       UJLUV.S    uuc    av.avuci<)u   ixsiu   u    SApcuvm    nu 

differ from the geometrical «ptics field only by a field satisfying the 

Sommerfeld condition, (5) will hold for the scattered field of the half-plane 

problem. In any event we adopt (5) as the imposed condition at infinity. It 

is clear that if (5) holds with the free space Green's function IT , it 

would also hold with the Green's function G of part I. 
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Let us apply Green's theorem to u and the Green1s function G given 

by (2). As the boundary of the region of integration is removed to in- 

finity, we obtain (in virtue of (5)): 

f(p) 

•</•••> -r»TfH*L-*U.} 

"r?"'*>{Si!2"'>"''a?i,,"Si"r" • 
Under suitable conditions, this may be written as 

(6) uy,-,».) - | g (2n*l) sin 3£= *• ^ df -^ H^kjo) J^k^O . 

At first, it might appear that lim uC*»',^ ) • 0; this is not true. 

We will show that the integral in (6) is no better than 0(—), hence the 

2n+l 1        n coefficient of sin ~    O1 is no better than 0(—); the series will exhibit 

discontinuities at «« - 0, 2TT, and  lim   u(p',S') - f(p»). 

Formula (6) gives the solution of our problem in a rather untractable 

form. Magnus (1) noted that integrals of the type (6) are considerably 

simplified when f(p) admits a series development in Bessel functions of 

integral order. Let 

-00 J_(kp) ,-v 
xm,n J0 f      "2n+lvT ' 2n+lU; "' af     ' 

We split the integral into integrals from 0 to to' and to1  to oo 

In each integral we let t - ky© 



- 10 - 

•{*•<*> J2nü(t) Ike« 

m,n 
2      ,2n+lx2 

H. 

2 

{jm(t)H^(t)-H^(t) J l2n+T 
2 

id) 
*2n*r 

2 
•-««} 

2      /2n+lx2 

7» 

V 
yy 

The contribution from 0 vanishes, the contribution at infinity is 

iTT /        2n<U -j- (m *-) 
2i  e _  
TT 2      /2n*lx2 

If we use in addition the formula for the Wronskian of part I, we 

obtain 

m,n 

iir 

" T m2 _ (agi)2 4 
J (V) ^i(y) + |^JX 

2      /2n+lx2 
m   " (2*) 

For the case t(e>) - J_C°)    (6) rdduces to: 

iTT 2n+l 

Vf' '*'> 
(i)m ;T «f ,4,-n (^D sin ^ e. 

7T 
2__(i) 
n«0 2       /2n-Hx2 

»    - I—; 
'2n*l 

2 
(y) 

J*(kJ0'> ^        2n^ 1 4    2n+l Ai 2__ ———*— sin ~r= &    . 
TT n-0   2      /2n»lx2 
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The first of these Fourier series in &f has coefficients 0(—s) due 
n 

to the rapid decrease with n of J^n+l^f' ^'    •^•s sej,ies represents a 

continuous function which vanishes at 6* • 0, 2TT. Hence the limiting 

values as 0' -> O, 2TT- are also zero. 

The second series has coefficients 0(—) and may exhibit a discon- 

tinuity at 0* • 0. As a matter of fact it can be shewn by an elementary 

computation that 

-IT cos m» - T  2a*  1  sin ^ W 
n-0 2  /2n-Hs2     * m - {—y) 

Thus: 

"•f0,   yr.«o-'„<y> 

as required. We can write: 

,. sm  "Tr co_     (2n+l) sin ^^ $• 

^J IT   n-0       2  ,2n+lx2    ^L 1     m ~ 

CO 

In general if fU>)  admits an expansion f(j=) » ^__/^ J (to=>) we will 

obtain 

"T   ^B_ m „ ain^i#t > v 2: A^(2n+1) —:— w,r) 
"     m,n-<y m 2      /2ntl^2   ^?± y 

m   - (-y)        2 
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It is now easy to solve the problem of diffraction by a half-plane. 

For simplicity we take normal incidence. The total field W(,o,0) may be 
ikx split up in an incident field e   and a scattered field u(<>,&)  satisrying 

(5). The values of u(©,6) on the half-plane are just f(p) • - 1. Since 

-1--T 6p 
J2p(kA we can use (7)' With /^m " ' em ^"i)m cos m 2 

( € • 1, € " 2, m > 1), thus obtaining 

oo 
u(f>',3«) - XeniJ^Cy) cos 2me« 

oo _ 4    _ „_ , _oo      cos m •*• 
(i)-n (»1) sin 3£L «. j  (y) X - *B 

* 2 ' 

The first sum is recognized as - cos (ke» sin O1) • - cos kx1. The last 

sum can be evaluated by an elementary computation (see Magnus (1), p. 175) 

-L cosmf g    a,n,2n+lTK 

Thus we have a single summation for u(p',0') and we obtain r 
i 5-   co 

(8)   W^,0) - i sin kx *2e     T ]?  (i)"n sin 2*1 0 sin 2|i 31. J^kp) 

2 

which agrees with formula (4) of (a). 
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It has been shown that (6) can be transformed into the Sommerfeld 

solution (see Magnus (1), p. 179) and into the Kontorowich-Lebedev 

solution ((4), p. 241). 

Part II. 

We consider now the diffraction by a cone with a spherical tip. 

The problem of the cone 

without a tip has been 

treated by SoUfrey (5). 

Fig. 3 
The cone is infinite and the source is taken at & m -ft, r m T%.    The 

problem can be solved with only slight additional difficulty for other 

locations of the source. 

The total field satisfies 

V2u • k2u - " £i§ " r')£fo)    (the field is independent 
21Tr sin 0        of») 

The boundary condition is taken as u • 0 on both th* sphere and cone. 

r sin v '-' ~ 2TTr~ sin 0 

When r / rf, the homogeneous equation can readily be separated yielding 

tbe equation for the & part of the separable solutions 
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_i a 
s £_ ^ (slll »„,) + A w - o      w(*0) - 0 

w(TT)   finite 

X is a separation constant. If we let X » V (^+1), x • cos O, 

3£ [(1-x2) ^J • V (v> +l)w - 0     w(-l) - finite 

w(cos 0Q) »0 . 

The only solution which is finite at -1 is p.(-x), the Legendre function 

of the first kind. 

The eigenvalues -i)  are determined from the equation Po(- cos £•_) • 0. 

The functions P^(- cos 6) from a complete orthogonal set in the interval 

Gu < £ < TT t  with weight sin 6. The normalisation factor 

J    P2(- cos S) sin 6 de - kp 

% 

will be evaluated later. 

We return to equation (9) and consider for u an expansion of the 

fore 

u • X. a.(r) PjX- cos e) . 

We multiply (9) by r P«(- cos 0) sin O and integrate from 0Q to T\' 

We obtain the differential equation for a^(r): 

(10)       £ (r2 a-) . kVa^ - ^ .1).  - =^jl 
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The solution of (10) may be written as: 

^ Jr> >Jr< 

where Z +1 / is a cylinder function which vanishes at r • a. We have 

taken care of the boundary conditions at r • a, r • oc, and of con- 

tinuity at r • r'. We determined C from the jump condition 

a'(r'+) - a'(r'-) -     1 

>"     '      >V      ' 2^r-2 

p»> - . ^^{^ #U*,> - ^0-) ^} 

a-(r«-) - C 
Hi+i/2(kr,)  fk i   1 

Hence 

C £ WronsKian {z   ^ H^}   - - _Jj 

We write 

^V2(kr)" Vv2(kr) - H(2); ,.> Vv2(kr) 

>+l/2^     ' 

It is known that 

Wronskian {ll(y
2)(kr), H<,1}(kr)}   - - ^   , 
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Hence: 

We may now write the totsl field: 

±   P/-CC, ») H<^2(ka) HW/2(kr>) Zotl/2(kr<) 

The sum is taken over all -J  such that P^(- cos 0_) * 0, and Z^+1/2 i
8 

defined by (3). 

We now consider the diffraction of a plane wave by our obstacle. 

This is to be obtained by removing the point source to infinity in a 

suitable manner. Using the symbols in figure 2 (with <•=»' • r')> &&<* 

letting the source go to - oo along the x axis: 

ikR    ikr' ikx 
e   r^f e e 
ETTR   4-nr» 

ikx 
The total field v(r,£) from a plane wave c        will be: 

LTTft 

r'-*Go e 

«.    *1»'r   P"(-C03 &) "^i/2(ka) Z^l/2(lg) ffl/a""» 
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Asymptotically 

H£/2(kr,) 
iCkr« - -* - *) 2 ~v~ 2 2 

W7   e 

The total field is: 

^_   P.(-cos e) H^/2(ka) Z      / (kr)    ,— - -i^L 

•»        H)-/2(ka)       JF 

A  may be obtained from (see Sollfrey (5))s 

A  - J  P?(-cos 0) sin S dS 

*o 

" 2TO **2 %{d(Jos e) p/"cos eÜe^o{äT V"*08 e)}^G-o 

In the case ©• » ^-, >; is determined from Pv(0) • 0. Hence ^ is an 

arbitrary odd integer, 2n+l 

A2n+1 - C ^l^00 &)  Sin ^ ^ " 1 **+lW  <* - A • 
2 

oo HUJ , (ka^ Z.  _,_fka}   
v(r e) - V" (An+3) P   ' -— 0)    $£*l&—^    <ai*^/^'—1 IJL / * \° 

This was obtained by Twersky (7) using a combination of an image method 

and superposition. 
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